

Aviation Environmental Design Tool (AEDT)

System Architecture

Doc #AEDT-AD-01

1/29/2007

Prepared by:

Christopher Roof, Andrew Hansen, Gregg Fleming
 USDOT Volpe Center

Ted Thrasher, Alex Nguyen, Cliff Hall

CSSI, Inc.

Eric Dinges, Raymond Bea
ATAC, Inc.

Fabio Grandi, Brian Kim, Scott Usdrowski

Wyle Laboratories, Inc.

Peter Hollingsworth
Georgia Tech.

Prepared for:

Federal Aviation Administration

Office of Environment and Energy

 2

Table of Contents

1 INTRODUCTION.. 5

1.1 Objective .. 5

1.2 Background ... 6
1.2.1 Legacy Model History and Timelines.. 6

2 DEVELOPMENT ENVIRONMENT SPECIFICATIONS.. 8

2.1 Microsoft .NET Environment .. 8

2.2 Architecture Modeling Tool... 12

3 SYSTEM DESCRIPTION... 13

3.1 Module Design Concepts .. 13

3.2 Functional Requirements Overview.. 13

3.3 Unit of Work.. 13

3.4 System Databases .. 14

3.5 System Modules... 14

3.6 Overall System Architecture.. 15

3.7 System Graphical User Interface Development ... 16
3.7.1 Local Graphical User Interface Development ... 17
3.7.2 Global Graphical User Interface Development.. 19

4 AEDT DEVELOPMENT ... 22

4.1 Timeline ... 22

4.2 Connectivity with Other Tools... 23
4.2.1 Environmental Design Space... 23
4.2.2 Aviation environmental Portfolio Management Tool.. 23
4.2.3 Other Tools .. 23

4.3 System Maintenance and Coding Standards.. 23

5 PROJECT MANAGEMENT ... 26

 3

5.1 Organizational Relationships... 26

6 AEDT DICTIONARY .. 32

6.1 Glossary of Terms... 32

6.2 Acronyms... 33

7 REFERENCES... 35

 4

List of Figures

FIGURE 1. DEVELOPMENT HISTORY OF FAA AEE AVIATION ENVIRONMENTAL

MODELING AND ASSESSMENT APPLICATIONS.. 7
FIGURE 2. OVERALL AEDT ARCHITECTURE ... 16
FIGURE 3. AEDT LOCAL GUI .. 17
FIGURE 4. AEDT VERSION 0.0 .. 18
FIGURE 5. AEDT VERSION 1.0 .. 18
FIGURE 6. AEDT VERSION 1.2 .. 19
FIGURE 7. AEDT VERSION 2.0 .. 19
FIGURE 8. ASP.NET EXAMPLE ... 20
FIGURE 9. EXEMPLAR AEDT GLOBAL INVENTORY ANALYZER INTERFACE........... 20
FIGURE 10. AEDT INVENTORY ANALYZER, FUEL BURN CAPABILITY....................... 21
FIGURE 11. AEDT INVENTORY ANALYZER, FUEL BURN CAPABILITY EXAMPLE

RESULTS ... 21
FIGURE 12. AEDT SYSTEM DEVELOPMENT FOLLOWS A FOUR YEAR

IMPLEMENTATION TIMELINE WITH PHASED IMPLEMENTATION OF
STAKEHOLDER DRIVEN FUNCTIONALITY REQUIREMENTS 22

List of Tables
TABLE 1. AEDT DATABASES ... 14
TABLE 2. AEDT MODULES.. 14

 5

1 Introduction

The Federal Aviation Administration's Office of Environment and Energy (FAA-AEE) is
developing a comprehensive suite of software tools that will allow for thorough assessment of
the environmental effects of aviation. The main goal of the effort is to develop a new capability
to assess the interdependencies between aviation-related noise and emissions effects, and to
provide comprehensive impact and cost and benefit analyses of aviation environmental policy
options. The building block of this suite of software tools that integrates existing noise and
emissions models is the Aviation Environmental Design Tool (AEDT). AEDT will provide a
framework for consistent modelling and assessment of aviation environmental effects by
Merging of existing tools and new modules into both a publicly available, regulatory/planning
component (Local) and the policy component of AEDT (Global).

The central building blocks used for the AEDT system are four existing FAA noise and
emissions modeling applications: (1) Integrated Noise Model (INM) – local noise; (2) Emissions
and Dispersion Modeling System (EDMS) – local emissions; (3) Model for Assessing Global
Exposure to the Noise of Transport Aircraft (MAGENTA) – global noise; and (4) System for
assessing Aviation’s Global Emissions (SAGE) – global emissions. This core of AEE developed
applications contains the software implementations of best-practice environmental modeling and
assessment techniques for aviation. Each application and its development history are
summarized below.

1.1 Objective

While the four core software applications noted above implement the best-practice techniques for
the respective local and global, noise and emissions models for aviation, they do so in a
disjointed and, in some cases, inconsistent way; this is due to their unique historic timelines and
factors that previously drove development. A prime objective in the AEDT architecture design
is to construct a framework for the common components of these applications to provide
coupled, and thereby consistent, analysis of the physical and logical processes being modeled.
The result is a new capability for assessment and/or projection that ties noise and emissions
effects together.

Additional objectives include improving user access and control, reducing application
maintenance and distribution effort by the provider, and increasing the adoption and use of AEE
models by aviation stakeholders worldwide.

Given this base of objectives for the system architecture, a requirements collection phase was
undertaken to gather input from the wide array of AEDT stakeholders. The first step in
identifying associated requirements was a series of stakeholder workshops hosted by the
National Academies of Science (NAS) Transportation Research Board (TRB) 1. Based on this
input, further definition and refinement of AEDT requirements was undertaken by the
development team (see Section 5.1 for a detailed description of the team and individual

1 http://www8.nationalacademies.org/cp/projectview.aspx?key=TAXX-P-03-05-A

 6

responsibilities). These requirements were consolidated into a single, living document [AEDT
Software Requirements Document, Doc #AEDT-REQ-01, 1/25/2007] to provide the
development team with a set of working specifications for the software implementation and tool
integration. The requirements are further dealt with below (functional) and in more detail
through the requirements document.

1.2 Background

The legacy environmental models upon which AEDT is built all have unique, historical
development timelines, uses and motivations for existence.

1.2.1 Legacy Model History and Timelines

INM, the local or terminal area noise analysis model, has the longest history of the legacy
models. First publicly released in 1978, the model has been utilized in support of Federal
Aviation Regulations (FAR) Part 150 (Airport Noise Compatibility Planning), Part 161 (Notice
and Approval of Airport Noise and Access Restrictions) and National Environmental Policy Act
of 1969 (NEPA) analysis. Additionally, the model has been used extensively in national parks in
support of the Grand Canyon Overflights Act and the Air Tour Management Act of 2000. A
companion model of INM, the Heliport Noise Model (HNM), which was specifically designed to
model rotorcraft operations, has been integrated into INM over the last several years. INM
predicts noise levels for fixed and rotorcraft aviation sources.

EDMS, the local emissions and dispersion analysis model, was first publicly released in 1991.
The model has been used in support of US Clean Air Act, National NEPA and State
Implementation Plan (SIP) development analyses. EDMS has also been integral to global
analyses of local air quality issues in support of the International Civil Aviation Administration’s
(ICAO) Committee on Aviation Environmental Protection (CAEP). EDMS predicts emissions,
as well as facilitates dispersion analyses, for fixed-wing aircraft as well as non-aviation emission
sources around airports.

MAGENTA, the global noise model, has been used for analysis in support of ICAO CAEP as
well as US domestic initiatives. First introduced in 1996 and the standard CAEP noise model
since CAEP5 in 2000, MAGENTA predicts population exposed to a range of day-night average
sound levels (DNL) for various policy scenarios for fixed wing aircraft.

SAGE, the global emissions model, has been used by FAA to develop global fuel burn and
emissions inventories for the years 2004 through 2005, as well as specific data analyses that take
advantage of a global gate-to-gate flight model. These inventories have been used to support
ICAO CAEP as well as the United Nations Framework Convention on Climate Change
(UNFCCC), and the Intergovernmental Panel on Climate Change (IPCC). Research efforts, such
as the analysis of the impact of Reduced Vertical Separation Minimum (RVSM), have been
undertaken by implementing the capability to change fleet-wide fuel burn values relative to
specific criteria in SAGE. SAGE predicts global emissions for fixed-wing aircraft.

 7

Figure 1 presents an overview of the individual legacy model development timelines. The figure
illustrates the varying introduction dates (as early as 1978 and recent as 2001) of the models, as
well as shows the staged merging of the tools into a single, integrated model.

Figure 1. Development history of FAA AEE aviation environmental modeling and

assessment applications

 8

2 Development Environment Specifications

The requirement that AEDT be a single, integrated analysis tool leads directly to specifications
for software development. The Microsoft integrated development environment, Visual Studio
(MSVS) is used for AEDT development because it provides capabilities matching the scalability,
flexibility, and efficiency required by AEDT. If necessary, other standards such as the ANSI
C++ standard, can be maintained within the MSVS environment on a per module basis. The
MSVS environment has direct benefit to three of the design goals noted above:

Scalability: The current MSVS product (MSVS .NET) enables developers to implement
software that operates in a distributed fashion, either on a single computer or a network of
computers. The main support provided for this approach to scalability is found in the tools for
communication between software implementations. The .NET approach is also amenable to
interfacing with applications on non-Windows platforms.

Flexibility: For both new and legacy implementations, MSVS offers the development team
flexibility in choice of software language and level of technology adoption. For example, an
existing application can be encapsulated within a communication layer and remain relatively
untouched or completely broken down and re-implemented with state-of-the-art technology.

Efficiency: The MSVS integrated development environment includes explicit tools (version
control, configuration management, software requirements and specifications, software life-cycle
tracking, integration with project management tools, automated diagramming of legacy projects,
extensive software support for database access, and a mature graphical user interface (GUI)
library that can be shared across the development team but utilized though one interface. MSVS
is also well suited to leverage prior development as the greater portion of existing software
implementations already reside in the current or prior MSVS versions (i.e., C++).

2.1 Microsoft .NET Environment

Following is a brief description of the Microsoft.NET environment. It is presented with a
specific focus on AEDT, namely the advantages .NET offers within the context of AEDT
development. Specially, .NET 2005 has been selected as the development environment to be
used by all AEDT developers beginning in January 2007.2

.NET is a framework for distributing application workload. It utilizes operating system
independent messaging, called eXtensible Markup Language (XML) to exchange data between
software modules. Among other benefits of XML, legacy applications can be integrated together
relatively quickly by implementing a simple software layer that encodes, or wraps, the
application’s input and output data into XML format. In the case of applications that are being

2 There are numerous resources on the web for providing additional background on .NET:

http://www.microsoft.com/Net/Default.aspx, http://support.microsoft.com/ph/8291,
http://support.microsoft.com/ph/8940. While much of the description in the above links centers on pure web
applications, the concepts apply equally well to conventional software efforts, including AEDT .

 9

developed from scratch or already reside on Microsoft Windows platforms, the .NET framework
provides the XML software layer so no code development is needed for communication.

Within the .NET environment, software applications benefit from:

• Scalable solutions through distributed computational workload;
• XML messaging protocol for platform independent data interface;
• independence of developer language preference;
• large library of foundation classes;
• industry standard network communications protocols; and
• efficient memory caching of stored data.

Microsoft Visual Studio (MSVS) .NET 2005 is the integrated development environment that
supports .NET software development. MSVS .NET maintains backward compatibility with
software developed either on earlier versions of MSVS or under ANSI C/C++ standards. From a
developer’s point of view, MSVS .NET provides access to improved technology for system
implementation.

Other features of .NET 2005 important for AEDT include:

Efficient caching: Caching is the storage of information that will be reused in a memory
location for faster access in the future. .NET allows the caching of data from a database so that
Internet/Intranet access to large databases is more efficient. This may provide advantages within
the context of SAGE and MAGENTA in particular. It may also allow FAA/AEE and other users
to more easily access the large databases associated with AEDT-Global.

Memory leak and crash protection: .NET automatically recovers from memory leaks and
errors through the use of what Microsoft terms Managed Code. Moreover, there are substantial
security benefits associated with managed code, which may be beneficial to AEDT, should it be
required to make the large databases of SAGE and MAGENTA (in particular) available over
either the Internet or an Intranet.

Backward Compatibility: While not always seamless, MSVS .NET and MSVS 2005
automatically support all software development projects developed in earlier MSVS releases.
Developers can take these prior implementations wholesale into the .NET and 2005 integrated
development environments so that they are immediately useable, as is. This is especially
important for AEDT, given the significant amount of legacy code throughout the existing
applications. Over time, legacy code can be re-engineered as desirable with the latest
technology.

Beyond MSVS .NET’s access to new implementation technologies, it also has two key benefits
as an AEDT development platform: (1) Cross-language support for developer convenience; and
(2) Low integration/port cost to reuse computational components of legacy AEE applications
(SAGE, INM, MAGENTA, EDMS).

 10

There are other significant benefits in moving the AEDT team collectively to the MSVS .NET
integrated development environment3, particularly with as many as eight organizations involved
in implementation. In one package MSVS provides capability for:

• Cross-language support (Basic, C, C++, C#, Java, J#, and other lesser languages);
• integrated source code version control and configuration management;
• software life-cycle tracking (test, alpha/beta release, bug fixes, etc.);
• Potential automated diagramming of C# modules;
• project management interface to MS Project (MSVS 2005 Team System);
• extensive software support for database access, e.g. Structured Query Language (SQL)

querying;
• mature library for graphical user interface implementation.

The specific items called out in the capabilities list above are described in more detail below.

Multiple language support: With .NET, programmers can write code in more than 25 .NET
languages. This allows programmers to develop in the language they know best. It also means
improved maintainability for AEDT, as it will be easier to assimilate new programmers, as
needed, given more flexibility with regard to language. .NET programming languages are
translated into what is referred to as a Common Language Runtime (CLR) during compiling.
This means that the same data types and calling conventions are used for every language - all
languages are equal. It is expected that wherever possible AEDT code will be written in C#
under the “managed code” infrastructure; it has been agreed that the Database Access and
Taskmaster modules will be written in C#, whereas the Local GUI development team is currently
considering the use of C# versus C++.

Version control and configuration management: Given the broad collection of developers
and organizations contributing to building AEDT or using AEDT within other models such as
APMT, the need for version control on both software implementation and description documents
is clear. Subversion, which can be invoked directly from the MSVS .NET development
environment, has been utilized in prior efforts by the AEDT development team. The Subversion
system uses an open interface that can act independently or with client interfaces such as
Tortoise. The Subversion system also handles data sets of binary or specially formatted files
such as data, documents, or intermediate sources. In order to manage the anticipated continual
AEDT development process, which will be undertaken somewhat independently by individual
development groups for the separate modules, version control will also manifest itself in the
individual module outputs.

Life-cycle tracking: The AEDT software life cycle before and after implementation must be
considered, particularly including the large install base of INM and EDMS users to be supported
by the AEDT application. Design and implementation are only a small part of the effort to build
and maintain the system. Testing, validation, distribution and tech support/bug fixing are also
important factors when considering the total effort. MSVS .NET has integrated tools to link

3 A high level overview of the MSVS .NET integrated development environment can be found at:

http://msdn.microsoft.com/vstudio/ and http://msdn2.microsoft.com/en-us/teamsystem/default.aspx

 11

design, implementation, and validation of software, and to streamline the maintenance phase of
software releases.

Interface to MS project management tools: If desired, the Team System version of MSVS
2005 can link directly with both SharePoint (the software used for the FAA’s Knowledge
Services Network - KSN) and MS Project applications to share data and more tightly bind the
implementation and management of the software development cycle. Specifically, documents
and source code implementation can be linked directly to project management plans through the
SharePoint document interface so that the management and implementation of the project are
more tightly coordinated.4

Software support for database access: The MSVS NET environment provides a library of
highly optimized database access functions, which can be invoked directly by the developer for
use in the software implementation. The .NET library covers a broad range of database
technologies, from the latest SQL solutions to conventional (flat) database formats.

Graphical User Interface Library: The majority of AEDT Local users will be using a
Microsoft Windows interface based on WinForms. The MSVS .NET environment provides the
mature and streamlined WinForms library for quickly implementing GUIs, both simple and
complex. Likewise, the Windows GUI has a wide array of third party, purpose built modules
supporting everything from GIS and mapping to three-dimensional rendering to graphical
database access/display. However, there is a programmatic/means restriction against integrating
third party tools with end-user license fees as requisite AEDT functionality. If licensed software
is incorporated it must either provide only optional functionality for the end-user or have free
end-user redistribution licensing structure.

For AEDT Global development, another GUI consideration is the use of WebForms based
interface. This approach employs a Service Oriented Architecture (SOA) for exposing
functionality to the end user through a web browser interface, rather than a self-contained
application.

Microsoft ASP.NET (Active Server Page) technology is one example of SOA infrastructure.
The AEDT architecture design will utilize this technology both for its development efficiency as
well as the compatibility with software modules (DLLs) implemented to support the WinForms
application instance. The benefit here is a reduced development effort in initial implementation
of AEDT functionality and avoidance of redundant maintenance effort when modifications and
enhancements are implemented. The WinForms and WebForms application designs can utilize,
for the most part, the same set of functional modules. The integrated .NET environment is well
suited for this dual approach.

4 A high-level description of the capability to link to project management tools is available at:

http://msdn2.microsoft.com/en-us/library/aa302181.aspx

 12

2.2 Architecture Modeling Tool

Conceptual schematics and diagrams are an important part of documenting and conveying
system architecture information. There is a wide range of software modeling tools for designing
and implementing software modules, e.g. Rational Rose/XDE, Rational Software Modeler, MS
Visio, and MS Visual Studio Class Designer. A significant benefit beyond the basic software
source code implementation is the extensive list of facilities for formally documenting the
software. Specifically these facilities are used for preparing module Interface Control
Documents and Algorithm Description Documents (ADD).

The MS Class Designer is an integrated tool with the Visual Studio integrated development
environment. It provides the user with the ability to automatically generate C# and VB instances
of source code. Further, this mechanism is bi-directional so that implementations of C# and VB
can be automatically represented graphically in the software model.

Class Designer does have drawbacks when compared with other applications, for instance, it
does not export Unified Modeling Language (UML) formatted documents (easy exchange with
other development tools), it does not currently support C++ or Java, and its export format is
Microsoft proprietary. The compromise in the decision to use Class Designer was based
primarily on the deficiencies of the other applications when interfacing with Visual Studio .NET
2005. The other applications did not support any wider language base nor did they integrate as
well with Visual Studio (separate applications). The end result is that Class Designer is used
much like the integrated editor or compiler within Visual Studio.

 13

3 System Description

3.1 Module Design Concepts

To focus AEDT system design, a set of high-level design paradigms for the project and its
implementation have been identified as follows:

• Modularity—isolate functionality to minimize work when addressing requirement
changes, h/w modernization, etc.

• Scalability—decompose units of work so that a plurality of h/w resources can be applied
• Flexibility—accommodate a variety of algorithms for accomplishing the same goal
• Usability—present streamlined interface for novice users and deep or intricate details for

experts
• Transparency—expose pertinent methods, data, inputs, and assumptions for any given

output
• Performance—meet computational demands of the current user base, anticipate

bottlenecks and develop implementations for efficiency and optimization

3.2 Functional Requirements Overview

The AEDT Requirements Document outlines the AEDT requirements identified to date.
Requirements are separated by global/local- and noise/emissions-derived inputs and outputs, as
well as those common to two or more of the legacy model delineations. All requirements are
notated as either critical or support in nature. Additionally, those existing requirements which
may not be appropriate in the future are annotated for potential, future phase-out.

3.3 Unit of Work

Recalling the primary objective in the AEDT architectural design (a common framework for
noise and emissions analysis), the starting concept for AEDT architectural design is the
identification of a minimum operation that can be configured for an environmental analysis. The
objective here is to find a common thread across both the noise-emissions dimension and the
local-global dimension. This common thread provides the context for both distinguishing
modularity and removing redundancy in the module breakdown of the system architecture. The
former is the entry point for addressing the design goals listed in Section 1 and the latter reduces
the effort expended to satisfy the combination of noise, emissions, local, and global
requirements.

With regard to the implementation, this “minimum operation” implies the basic unit of work for
the system. To conduct the simplest analysis, the system must process a minimum operation or
one unit of work. The minimum operation is defined to be one gate-to-gate flight path. More
complex or wider analysis is then iteration over multiple units of work. In cases where state
information on only a portion of the entire path, say a local noise or air quality assessment, the
context of a gate-to-gate trajectory is still pertinent as the aircraft conditions, e.g. take-off weight,
and approach and departure procedures are dependent on the origin/destination (O/D) of the

 14

flight. However, in this case the calculation of the trajectory over the entire flight is
foreshortened to the region of interest.

3.4 System Databases

The AEDT system will rely on four core input databases for source information. These are
itemized below along with the output (results) database structure. These databases will, if not
already, be implemented in a relational database management system (RDBMS). Each database
has a database description document (DDD) which specifies the structure of the database, the
units and fields stored within it, as well as the procedure for maintaining and/or updating the
content in the database.

Table 1. AEDT Databases

Database (Lead) Doc # Purpose
Airports
(AMalwitz)

AEDT-DDD-01-01 Collection of airport specific data
including runway plan, navaids, local
historical weather.

Fleet
(CHall)

AEDT-DDD-02-01 Annual itemization of world-wide
aircraft in service including
performance, noise, and emissions
parameters.

Movements/Operations
(SUsdrowski)

AEDT-DDD-03-01 Itemization of flights including
schedule or trajectory information for
use in assessment or analysis.

Aircraft Retirement/Replacement
(FGrandi)

AEDT-DDD-04-01 Update schedules for building future
fleets in forward looking analyses.

Results Inventory
(SBalasubramanian)

AEDT-DDD-05-01 Annual emissions and noise
assessment inventories.

3.5 System Modules

The modules currently identified for AEDT development, including the individual module leads,
are as follows:

Table 2. AEDT Modules

Module (Lead) Doc # Purpose
Aircraft Performance
(EDinges)

AEDT-ICD-01-01 Calculate gate-to-gate aircraft performance.

Aircraft Emissions
(AMalwitz)

AEDT-ICD-02-01 Calculate aircraft emissions.

Aircraft Acoustics
(EBoeker)

AEDT-ICD-03-01 Calculate aircraft noise.

Local GUI
(RBea, ANguyen)

AEDT-ICD-04-01 Graphical user interface for running local
analyses.

 15

Module (Lead) Doc # Purpose
Database Access
(SBalasubramanian)

AEDT-ICD-05-01 Input/output all data for all AEDT modules.

Fleet Operations
(FGrandi)

AEDT-ICD-06-01 Calculate future year fleet and operations
utilizing FESG and other baseline forecasts.

Taskmaster
(RBea)

AEDT-ICD-07-01 Coordinate interface/processes for all
communications between AEDT modules.

GIS
(TLedoux)

AEDT-ICD-08-01 Performs all graphical illustration and
manipulation of data.

Fuel-Burn
(AMalwitz)

AEDT-ICD-09-01 Calculates aircraft fuel burn.

Interpolation
(JRuggerio)

AEDT-ICD-10-01 Undertakes all required interpolation and
extrapolation.

Terrain
(PGerbi)

AEDT-ICD-11-01 Undertakes all terrain-related calculations for
noise and other modules.

Global GUI
(AMalwitz)

AEDT-ICD-12-01 Graphical user interface for running and
querying global analyses.

Data Validation
(AHansen)

AEDT-ICD-13-01 Validates input/output data from AEDT and 3rd
party modules.

Ground Track
Dispersion
(SBalasubramanian)

AEDT-ICD-14-01 Disperses enroute OAG flight tracks per
statistical analysis of historic radar data.

Weather Module
(CHall)

AEDT-ICD-15-01 Processes weather for aircraft performance and
local dispersion modeling.

Radar Flight Profile
Module
(EDinges)

AEDT-ICD-16-01 Calculates AEDT-compatible trajectories
(including thrust) from aircraft position data,
currently relies on radar data.

3.6 Overall System Architecture

The overall system architecture is depicted in Figure 2 below. In addition to the system
databases (System Data and Study Data) and modules highlighted above, AEDT will also make
use of third-party components. Some third-party software will be used as mandated by EPA and
FAA guidance and regulations; other software will be used as deemed most appropriate from a
development standpoint.

 16

Figure 2. Overall AEDT Architecture

As can be seen in Figure 2, the Database Access (DAM) and Taskmaster modules are integral to
all AEDT functionality. The DAM will be used to access and manipulate all system and user
data required for use in AEDT. The Taskmaster will be the single control module which will
manage all AEDT processes. Together the DAM and Taskmaster will form the core
functionality of the tool. They also ultimately will provide significant support to the Aircraft
environmental Portfolio Management Tool (APMT), providing consistency between AEDT and
APMT through the use of harmonized processes. The overall system architecture will
continuously be revisited as the DAN and Taskmaster development efforts progress further.

3.7 System Graphical User Interface Development

The overall system architecture is common to the entire tool set, including both local and global
applications. Due, however, to the significantly different functionality and user bases of the
local and global applications, the decision was made to maintain separate GUIs for the two
portions of the tool.

 17

3.7.1 Local Graphical User Interface Development

The Local GUI team is tasked with the harmonization and merging of the local tools. This
consists of the merging of existing capabilities contained within INM and EDMS, as well as the
underlying workflows and associated data structures. Additionally, due to the significant user
bases for the legacy tools, consideration will be made for maintaining consistency with the
existing features in the legacy tools, where possible. A single local interface will eliminate
redundancy inherent in the use of two separate GUIs and tools, the obvious example being the
need to only generate a single set of aircraft performance characteristics for both noise and
emissions modeling.

Figure 3 below shows examples of the INM and EDMS GUIs, illustrating their merging into a
single, AEDT Local GUI. Significant development progress will be realized on the Local GUI
after the releases of INM Version 7.0 and EDMS Version 5.0. The formation of a single,
combined noise and emissions Design Review Group (DRG) will also aide the development
effort. A single, integrated Local GUI is scheduled to be released in 2010.

Figure 3. AEDT Local GUI

Parallel to development of a single, local GUI, the legacy INM and EDMS modules and
databases are being harmonized and integrated in a step-wise manner. This (1) provides for a
manageable coding integration process, and (2) in parallel to the combined DRG effort

AEDT Local

GUI

 18

highlighted above, minimizes the potential to disturb the large user base of the legacy models.
Figures 4 through 7 highlight the step-wise integration of the local modules and databases.

EDMS 5 Release

INM 7 Release

GUI

Flight Module

Noise-Specific Database Contour Module

Noise Module Terrain Module

Airport Database

Study Data

Aircraft Database

GUI

Emissions Inventory Module Concentrations Module

Delay ModelEmissions-Specific Database

Figure 4. AEDT Version 0.0

Equivalent to EDMS 6 Release

Equivalent to INM 8 Release

Flight Module GUI – I/O View

Airport Database Study DataAircraft Database
GIS Import/Export Module

New Emissions Features

Reporting Module

New Noise
Features

GUI

Noise-Specific Database Contour Module

Noise Module Terrain Module Study Data

GUI

Emissions Inventory Module Concentrations Module

Delay ModelEmissions-Specific Database

Figure 5. AEDT Version 1.0

 19

Equivalent to EDMS 7 Release

Equivalent to INM 9 Release

GUI

Flight/Surface Module

Standard Database Contour Module

Noise Module

Terrain Module

GUI
Weather Module

Study Data

GUI
Emissions Inventory Module Concentrations Module

GIS Import/Export Module

Reporting Module

Figure 6. AEDT Version 1.2

Flight/Surface Module

Common Database
Contour Module

Noise Module

Terrain Module

GUI

Study Data

Emissions Inventory Module
Concentrations Module

GIS Import/Export Module

Weather Module

Tradeoff Analysis Module

Reporting Module

Figure 7. AEDT Version 2.0

3.7.2 Global Graphical User Interface Development

The MAGENTA-SAGE (MASAGE) integration team is tasked with the harmonization and
merging of the global tools into a single, global tool. Unlike the local tool development, while
the MAGENTA and SAGE systems are relatively mature, they have not historically been fielded
beyond the development team. While this means that more actual development may need to be
undertaken, it also allows for a development process from scratch to support the global needs.

As outlined in Section 2.1, integral to the .NET environment is the ASP.NET web service. Use
of this technology allows for the running of actual AEDT modules (DLLs) remotely via web
applications. Figure 8 below highlights a potential use of ASP.NET.

 20

Figure 8. ASP.NET Example

A prototype AEDT Global Inventory Analyzer tool has been developed using the ASP.NET
technology. This tool allows for the querying of historic AEDT global emissions inventories.
Various means for querying the archival data exist, including: (1) high level, aggregate inventory
analysis (i.e., summaries making use of a partial or entire year’s inventory); (2) analysis of single
or multiple airport operations; (3) custom queries, which may target specific airframes and/or
engines, or may involve specific subsets of airports, or specific dates for analysis; and (4) manual
SQL queries, which allow expert relational database users to undertake highly specialized
queries.

Figure 9 below presents the initial screen of the beta AEDT Global Inventory Analyzer
application.

Figure 9. Exemplar AEDT Global Inventory Analyzer Interface

Fuel burn computations may be initiated in the application to calculate airframe/engine-specific
fuel burn, given a specific O/D pair, as well as cruise altitude and aircraft takeoff weight.
Figures 10 and 11, respectively, present the fuel burn input windows and example output results.

 Web/ASP.NET

External Application
Internet

Control Loop ASP Form (web page)

Output (Dataset/XML message`)
Module DLL

 21

Figure 10. AEDT Inventory Analyzer, Fuel Burn Capability

Figure 11. AEDT Inventory Analyzer, Fuel Burn Capability Example Results

The tool allows for the easy export of all query results to Microsoft Excel and Word for
documentation and further analysis purposes, as well as to comma-delimited CSV format.

The next phase of development will include the addition of global noise inventory results to the
querying capability. Ultimately, the tool is envisioned to be capable of generating both noise and
emissions global inventories and/or policy scenario computations. With the ability to remotely
query noise and emissions inventories, the tool will be useful for policymakers at both the
domestic and global level, without the need for the development of analysis-specific software or
the direct involvement of software developers.

 22

4 AEDT Development

4.1 Timeline

Figure 12 presents the anticipated AEDT development timeline though the year 2010. In
addition to AEDT-specific milestones, since AEDT is envisioned to directly support the ICAO
CAEP decision process, specific important CAEP meetings/milestones are identified throughout
the development process.

Figure 12. AEDT system development follows a four year implementation timeline with

phased implementation of stakeholder driven functionality requirements

 23

4.2 Connectivity with Other Tools

AEDT will be a standalone system capable of modeling impacts due to aviation sources. In
addition, however, AEDT will need to directly interface with other tools. Sections 4.2.1 through
4.2.3 outline that connectivity.

4.2.1 Environmental Design Space

The Environmental Design Space (EDS) will be the tool used to estimate source noise, exhaust
emissions, performance, and economic parameters for potential future aircraft designs under
different technological scenarios. Incorporating detailed future aircraft designs in environmental
analyses will allow for more accurate prediction of future trends of aviation impacts.

AEDT will interface with EDS directly through the Fleet Database. In particular, EDS output
data will directly populate additional records in the database. This will allow for direct use of
EDS-defined aircraft within AEDT.

4.2.2 Aviation environmental Portfolio Management Tool

The Aviation Environmental Portfolio Management Tool (APMT) will be the tool used to
effectively assess and communicate environmental effects, interrelationships, and economic
consequences based on integrated analyses. It will directly link the environmental predictive
capabilities of AEDT with comprehensive economic analysis capabilities, which have previously
been done independently.

APMT will link to AEDT by using the AEDT databases and modules outline in sections 3.4 and
3.5 of this document. This direct linkage is made possible by the detailed code development and
documentation standards outlined in sections 3 and 4.

4.2.3 Other Tools

Connectivity with all tools is preferred to be via direct use of modules (specifically dynamic link
libraries – DLLs). In rare occasions, module source code may be exchanged. Specific guidance
is available for these exceptions.

4.3 System Maintenance and Coding Standards

For the purposes of AEDT development, implementation and coding standards will be applied at
the module level. Application of these standards down to the unit level is encouraged, but in
most cases opaque to the overall system. The standard consists of four components: 1) Interface
Control Document (ICD), 2) ADD, 3) exemplar I/O data set (to be included within the
appropriate ICD) for verification, and 4) a set of formatting rules for the module interface.

Each module will have a single point of authority and responsibility for version release. For a
software module release to be accepted, each of these components must be available for the
given version to be released. Example ICD, ADD, and header file templates can be found in the

 24

appendix. The release of a module is accomplished through the publication of draft ICD, ADD,
example I/O, header file, and module library information on the FAA AEE KSN and notification
of Andrew Hansen, the AEDT Technology Expert at Volpe. A rigorous review process is then
undertaken involving Mr. Hansen and module point of contact, to ensure (1) internal consistency
and completeness for the module and documentation, and (2) to verify consistency across all
AEDT modules, in terms of both coding implementation and supporting documentation. Module
release is accomplished at the end of the joint review process, after which the module is entered
into the AEDT software module and database matrix located on the KSN5. Upon release, the
module authority is the contact through which users feed back information about compatibility,
usability, and any bug reports.

The ICD sets the input and output specification for the module release. It identifies name, type,
units, and assumptions on each variable in the module interface and falls under the same version
control as the software implementation.

The ADD conveys the mathematical and logical concepts that encode the software module.
Much like a technical manual for the module, it includes underlying equations and schematics
for the algorithms The ADD references all constants used in the module implementation and
assumptions about the physical or logical system being modeled by the encoded algorithm. As
with the ICD, the ADD falls under the same version control as the software module

The header file formatting rules serve to make the reading and interpreting of the module
interface more efficient. They establish naming conventions that map with dictionary and ICD
entries so that the header file is a summary of the ICD. The resulting header file is, of course,
tied to the software module and falls under the same version control.

The example I/O data set provides users instruction on preparing data for the associated module
as well as a test mechanism to ensure that the implementation was invoked properly. The data
set must express all mandatory and optional input parameters. The test data set also establishes a
formal QA/QC evaluation mechanism.

In addition to the software implementation standards above, the AEDT standard for supporting
databases and their release is the Database Design Document (DDD). The DDD establishes the
sources, format, and parameters to be contained in the database, the process for updating or
adding information to the given database, and the dated release version of the database itself. As
with software modules, a database release is accomplished through the publishing of the
Database and its DDD on the FAA KSN by the respective database lead, and successfully
completing the review process for consistency and completeness.

Manipulation of the input databases (fleet, movements, airports) will be a primary way in which
external users will interact with the AEDT system. The details in the respective DDDs provide
the information that the interface designers and end users will need to effectively present and
manipulate configurable data or pre-process new data for inclusion into the system.

5 https://ksn.faa.gov/km/aee/aedt/Documentation/In%20Development/Architecture/AEDT_doc_checklist.doc

 25

These coding and database standards improve the transparency of the AEDT application under
both external review/auditing and future development, if extending the implementation to
accommodate new requirements. In the immediate process, the ICD/ADD/DDD documents are
the foundation of the modularity in the AEDT design. As a case in point, the ICD and DDD
alone provide enough information to build a graphical interface for a given module or database.

The guideline further specifies the platform to be used for design and implementation. As noted
above, MSVS .NET 2005 is the integrated development environment being utilized on the
AEDT project. This choice has implications on software module implementation and the
integration of those modules into target applications. However, .NET introduces additional
options for software implementation that are not constrained by the module requirements noted
above. Additional guidelines are provided here for the software engineer executing the software
implementation from a given module design.

• Microsoft .NET Framework 2.0
o Implementation of module software should be based on Framework 2.0
o CLR compilation

• Module Namespace
o Scope for a module’s data and functions must be defined in its namespace
o Each module’s ICD must document the module namespace
o Namespace descriptions in the ICD are the .NET analog of header files

• Compilation Settings
o Computation module build targets must be Dynamic Link Libraries
o New module implementations must be thread-safe

 26

5 Project Management

A long-term objective for AEDT development is a close integration of project management with
the software development and implementation. As such, there are several benefits to the choice
of the MSVS integrated development environments.

• Integrated project management between project plans and managed objects

o Project plans (timelines, receivables, deliverables, funding/costing, etc.)
 Direct interface with MS Project
 Project planning, estimation, and tracking
 Completion of milestone triggers (i.e., uploading final database to server

maps to completion of milestone)
o Interface with Microsoft SharePoint (FAA-KSN)
o Potential for integrated version-control and configuration management

• Three categories of managed objects (explicit versioning and revision control)
o Algorithm description, interface control, and DDDs
o Software implementations (source code, libraries, programs)
o Test & validation data (scenarios, source databases, results)
o Each linked back to milestones/deliverables in project plans

• Accessibility to plans and managed objects
o Location/people

 FAA
 Volpe Center
 National Aeronautics and Space Administration (NASA)
 Private contractors (3)
 Academia (2)

o Addressable user permissions (read-only, author, administrator, etc.)
o Centralized administration but collaborative development
o Web-based interface

• Rollout Schedule: Phased approach across managed objects
o Project plans--need for immediate application (next couple of weeks)
o Algorithm and interface document control--next few months
o Software implementation version control—6 to 8 months
o Test and validation data--over the next year

5.1 Organizational Relationships

The AEDT Development Team is made up of the FAA-AEE, the John A. Volpe National
Transportation Systems Center, Environmental Measurement and Modeling Division (Volpe
Center), ATAC Corporation, CSSI Inc. and Wyle Laboratories, Inc. Due to the tight linkage
between AEDT and the EDS and the Aircraft Portfolio Management Tool (APMT), the
Massachusetts Institute of Technology (MIT) and Georgia Tech, the developers of EDS and
APMT, are also tightly coupled with all AEDT-related architecture.

 27

Specific roles of each of the AEDT Development Team members are outlined below. Where
appropriate, specific individuals at each organization are identified. Each team member also has
at least one representative who participates in regularly-scheduled, bi-weekly conference calls,
which are a mechanism to (1) update the group on recent development activities; and (2) define
the path forward on specific architecture issues.

Volpe Center

Project Management –Roof (Electronics Engineer)/Reherman (General Engineer)
Develop detailed monthly progress reports for development team activities; Develop
various project plans; Ensure adherence to individual project plans; lead bi-weekly
AEDT Leads calls, Maintain and track annual AEDT budget and task spreadsheet, Assist
in the preparation of contractor-related statements of work

CAEP Support - Fleming
Chair ICAO CAEP Working Group 2, Task Group 2; Provide technical support to TG3
and TG4, as appropriate, Provide technical support to Steering Group and full CAEP
meetings; liaison and attend Forecasting and Economic Analysis Support Group (FESG)
meetings, and meetings of WG1 and WG3 and their subgroups, as appropriate (e.g., in
support of Campbell Hill, Best Practices, In Production databases); coordinate all AEDT
Development Team activities in support of WG1-3, SG, CAEP and FESG

APMT Support –Roof (Electronics Engineer)/Hansen (Electronics Engineer)
Represent AEDT by participating in all APMT conference calls, including Leads,
Integration, PEB, Assessment, and Analysis and Display teams; provide AEDT module
assessment support to APMT team; provide AEDT modules and databases for use by
APMT; support APMT team in the integration of AEDT modules and databases

Other FAA Development Initiatives Liaison - Fleming
Coordinate development activities and provide module technical support to other FAA
environmental modeling activities such as NIRS, ATO/ATC, etc.; lead Joint Planning and
Development Office (JPDO) Environmental Integrated Product Team (EIPT) Tools
Panel; liaison between AEDT and Evaluation Analysis Division (EAD); coordinate
AEDT development with Partnership for Air Transportation Noise and Emissions
Research (PARTNER) Center of Excellence (COE)

Architecture –Roof (Electronics Engineer)/Hansen (Electronics Engineer)
Develop AEDT Architecture Document to summarize, standardize and harmonize all
development activities via QA/QC of all module and database architecture
documentation; lead bi-weekly architecture calls; advise development team on
architecture-related initiatives; lead effort to integrate AEDT modules and databases into
a single system that can be accessed through a common interface

Verification and Validation - Fleming
Develop, maintain and execute an AEDT Verification and Validation (V&V) plan which
will guide all system, module and database V&V efforts.

Database Access Module - Balasubramanian (Senior Engineer)
Lead development efforts of the AEDT database access module; this includes direct
coordination with APMT and associated requirements to ensure module meets common
needs

Emissions Module - Malwitz (Electronics Engineer)

 28

Develop and maintain the algorithms for the AEDT emissions module; perform
measurement activities in support of algorithm development and validation and
verification

Terrain Module – Gerbi (Middle Engineer)
Develop and maintain the algorithms and interfaces for AEDT access to terrain models
and databases.

Noise Module - Boeker (Physical Scientist)
Develop and maintain the algorithms for the AEDT aircraft noise module; perform
measurement activities in support of algorithm development and validation and
verification for the module; liaison with international groups (i.e., Society of Automotive
Engineers (SAE) A-21 and European Civil Aviation Conference (ECAC)/AERMOD
(steady-state plume dispersion regulatory model) to ensure module capabilities are
consistent with international guidance

Taskmaster Module – Hansen (Electronics Engineer)
Work with ATAC, CSSI, and Wyle on development of algorithms for the AEDT
taskmaster module; this includes direct coordination with APMT and associated
requirements to ensure module meets common needs.

INM - Boeker (Physical Scientist)
Continue to support public releases of INM, including noise module enhancements and
bug fixes, V&V of Noise-Power-Distance (NPD) updates, maintenance of research
versions, including acoustically hard ground and multiconfiguration capabilities; provide
user support related to noise computation issues,

AEDT/SAGE - Malwitz (Electronics Engineer)
Continue to develop annual global aviation emissions inventories; update AEDT/SAGE
per state of current research (i.e., algorithm enhancements such as Specific Fuel
Consumption (SFC) corrections, updated flight track dispersion methodologies, etc.)

MAGENTA-SAGE Integration (co-lead) - Hansen (Electronics Engineer)
Co-lead development efforts to harmonize and combine existing and planned SAGE and
MAGENTA capabilities, including development of as standalone, integrated inventory
querying capability and GUI

Global Inventory Query GUI - Malwitz (Electronics Engineer)
Develop and maintain a global noise and emissions inventory querying capability,
including the ability to run OD pair-based fuel burn.

Airports Database – Malwitz (Electronics Engineer)
Develop and maintain the AEDT airports database, including harmonizing with existing
legacy tools and newer sources as they become available, coordinate this activity with
ICAO/CAEP, as appropriate

Global Movements Database – Balasubramanian (Senior Engineer)
Develop and maintain the AEDT global movements database, including generating
annual databases (from International Official Airline Guide (IOAG), Enhanced Traffic
Management System (ETMS), Enhanced Traffic Flow Management System (ETFMS)
and other sources as they become available); this includes liaison activities with groups
such as Eurocontrol in order to further international buy-in to the database

Joint EDMS-INM DRG –Boeker (Physical Scientist)
Co-lead joint group made up of EDMS and INM DRG members

 29

ATAC
Aircraft Performance Module – Dinges (Program Manager)

Develop and maintain the algorithms for the AEDT aircraft noise module; perform
measurement activities in support of algorithm development and validation and
verification for the module; liaison with international groups (i.e., SAE A-21 and
ECAC/AERMOD to ensure module capabilities are consistent with international
guidance

Taskmaster Module - Bea (Engineer)
Lead development efforts for the AEDT taskmaster module used to coordinate
interface/processes for all communications between AEDT modules; this includes direct
coordination with APMT and associated requirements to ensure module meets common
needs

Radar Flight Profile Module – Dinges (Program Manager)
Develop and maintain the algorithms for the AEDT radar flight profile module used to
create AEDT-compatible flight paths, including thrust, from aircraft position data.
Support development of an SAE guidance document covering the methodology and
update module to stay consistent with SAE guidance as appropriate.

INM - Dinges (Program Manager)
Continue to support limited public releases of INM, which will end at least a year prior to
public release of AEDT, including GUI and flight module enhancements and bug fixes,
V&V of NPD updates, maintenance of research versions, including acoustically hard
ground and multiconfiguration capabilities; provide user support related to GUI and
aircraft performance issues; continue harmonization of methods and databases with
EDMS

Local GUI (co-lead) – Bea (Engineer)
Co-lead development of an integrated AEDT Local GUI for noise and emissions analysis

Terminal Area Movements Data - Dinges (Program Manager)
Maintain and update the Performance Data Analysis and Reporting System

(PDARS) database for use in various AEDT assessments
Continuous Descent Approach (CDA) Demonstration - Dinges

Develop algorithms and software required to support coordinated noise and emission
analyses of the effects of CDAs including making use of PDARS data, perform CDA
Demonstration performance and noise analyses.

Fleet Database - Dinges (Program Manager)
Support AEDT Fleet Database development related to aircraft flight performance data
including ensuring consistency between the AEDT database and current best practice
flight profile and performance data definitions.

Joint EDMS-INM DRG – Dinges (Program Manager)
Co-lead joint group made up of EDMS and INM DRG members

CSSI

Aircraft Queuing and Delay Module – Nguyen (Program Manager)
Develop and maintain the algorithms for the AEDT module to model aircraft delay,
queuing, and sequencing of aircraft operations.

EDMS - Nguyen (Program Manager)

 30

Continue to develop and support limited public releases of EDMS, which will end at least
a year prior to public release of AEDT, including GUI and computation enhancements
and bug fixes, provide user support related to EDMS, and continue harmonization of
methods and databases with INM.

Weather – Nguyen (Program Manager)/Yirenkyi (Software Developer)
Develop and maintain the algorithms for a module for reading, processing, and storing
atmospherics / weather data for AEDT.

Taskmaster Module – Hall (Senior Software Engineer)/Nguyen (Program Manager)
Work with ATAC, Volpe, and Wyle on development of algorithms for the AEDT
taskmaster module; this includes direct coordination with APMT and associated
requirements to ensure module meets common needs.

Flight Operations Module - Nguyen (Program Manager)
Work with Wyle on enhancements to the FOM to include consideration of airport
capacity and spreading of aircraft schedules when demand exceeds capacity.

Local Dispersion Modules - Hall (Senior Software Engineer)
Maintain AEDT compatibility with and implement the latest EPA atmospheric dispersion
models.

Local GUI (co-lead) - Hall (Senior Software Engineer)
Co-lead development of an integrated AEDT Local GUI for noise and emissions analysis.

Requirements - Nguyen (Program Manager)
Develop AEDT Requirements Document to summarize all AEDT global and local noise
and emissions requirements.

Fleet Database - Hall (Senior Software Engineer)
Develop and maintain the AEDT fleet database, including harmonization of aircraft types
between EDMS and INM, and groupings between the US and Europe.

Joint EDMS-INM DRG –Thrasher (Executive Director)
Co-lead joint group made up of EDMS and INM DRG members

Wyle

Flight Operations Module – Grandi (Senior Engineer)
Develop and maintain the AEDT flight operations module; this includes the generation of
scenario-specific flight operations and movements for AEDT and APMT sample problem
scenario analysis

Forecasting Databases - Grandi (Senior Engineer)
Maintain and update databases (e.g., FESG projections, replacement aircraft, etc.) related
to forecasting and scenario assessments

MAGENTA – Grandi (Senior Engineer)/Usdrowski (Engineer)
Continue to develop domestic and international MAGENTA runs; update
AEDT/MAGENTA per state of current research (i.e., updates to core INM noise and
flight trajectory computations)

GIS – Ledoux (Senior GIS Specialist)
Lead AEDT and APMT GIS development activities in order to leverage a single set of
consistent tools across the entire development effort

MAGENTA-SAGE Integration (co-lead) - Grandi (Senior Engineer)

 31

Co-lead development efforts to harmonize and combine existing and planned SAGE and
MAGENTA capabilities, including development of as standalone inventory querying
capability

All Organizations

International Technical Conference Support
Promote AEDT development and gain stakeholder buy-in through participation in and
presentations at international technical conferences such as INTERNOISE, AWM&A and
ICAS

 32

6 AEDT Dictionary

6.1 Glossary of Terms

Algorithm Design Document: Written or schematic description of the math, logic, and definitions
implemented by a structural element (module or sub-module).

Architecture: The description of the structural elements in a system, their externally visible
properties, and the relationships between elements. Alt: A framework for the disciplined
introduction of change to a design.

Bandwidth Constraint: An information processing constraint where the output depends on the
product of two finite, often competing, resources. Classic example is signal processing—
frequency and time.

Behavioral View: Architectural document describing the instantiation of the structural modules
in the architecture, e.g. database, software library, stand-alone application, procedure, script, etc.,
as well as their host platforms and, potentially, user interfaces.

Computational Pipeline: A processing model whereby data is manipulated in a preconfigured
way at different stages along the pipeline often in a stream based approach. Effective parallelism
can be achieved by replicating pipelines.

Data Flow Diagram: Architectural document containing a schematic that identifies the
information exchanged between structural elements of the system.

Linear Dynamic System: Description of a physical phenomenon that can be represented as a
linear state transition accounting for time varying forces via a state transition matrix.

Functional View: Architectural document containing a schematic that identifies the structural
elements of the system and describes the scope of the each element’s function.

Interface Control Document: Specification of the format, communication protocol, units, valid
ranges, and assumptions for input and output data exchanged by a structural element (module or
sub-module)..

Kinematic System: Description of a mechanical system representing the equations of motion for a
body with constant forces.

Software Layer: The level at which a software developer implements code: Source, Application
Programmer Interface (API), Dynamic Library, and Application. Generally the software
developer encodes (or compiles) from one given level to the next.

Structural Element: A uniquely identifiable module that can be isolated within a complete
system. Structural elements may be hierarchical, e.g. a software module, which is a structural

 33

element, may be further broken down into units, which are themselves structural elements of the
software module.

6.2 Acronyms

A-21 SAE Committee on Aviation Noise
ADD Algorithm Description Document
AEDT Aviation Environmental Design Tool
AEE Office of Environment and Energy
AERMOD Steady-state plume dispersion regulatory model
API Application Programmer Interface
APMT Aviation Environmental Portfolio Management Tool
CAEP Committee on Aviation Environmental Protection
CDA Continuous Descent Approach
CLR Common Language Runtime
COE Center of Excellence
DDD Database Design Document
DRG Design Review Group
ECAC European Civil Aviation Conference
EAD Evaluation Analysis Division
EDMS Emissions and Dispersion Modeling System
EDS Environmental Design Space
EIPT Environmental Integrated Product Team
ETMS Enhanced Traffic Management System
ETFMS Enhanced Traffic Flow Management System
Eurocontrol European Organization for the Safety of Air Navigation
FAA Federal Aviation Administration
FAR Federal Aviation Regulations
FBE Fuel Burn and Emissions
FESG Forecasting and Economic Analysis Support Group
GUI Graphical User Interface
HNM Heliport Noise Model
ICAO International Civil Aviation Organization
ICD Interface Control Document
INM Integrated Noise Model
IOAG International Official Airline Guide
IPCC Intergovernmental Panel on Climate Change
JPDO Joint Planning and Development Office
KSN Knowledge Services Network
MAGENTA Model for Assessing Global Exposure to the Noise of Transport Aircraft
MASAGE MAGENTA–SAGE
MIT Massachusetts Institute of Technology
MSDN Microsoft Developers Network
MSVS Microsoft Visual Studio
NAS National Academies of Science
NASA National Aeronautics and Space Administration

 34

NOAA National Oceanic and Atmospheric Administration
NPD Noise-Power-Distance
O/D Origin/Destination
PARTNER Partnership for Air Transportation Noise and Emissions Research
PDARS Performance Data Analysis and Reporting System
QA Quality Assurance
QC Quality Check
RDBMS Relation Database Management System
SAE Society of Automotive Engineers
SAGE System for assessing Aviation’s Global Emissions
SFC Specific Fuel Consumption
SQL Structured Query Language
TRB Transportation Research Board
UML Unified Modeling Language
UN United Nations
V&V Validation and Verification

 35

7 References

Fleming, G., et. al., “Aviation Environmental Design Tool Work Plan”, FAA Technical Report,
August, 2004.

AEDT Software Requirements Document, Doc #AEDT-REQ-01, 8/15/2006].

Letter Report, Workshop #1, FAA Aviation Environmental Design Tool (AEDT), March 31 –
April 2, 2004, Washington, DC, Transportation Research Board of the National Academies.
(http://onlinepubs.trb.org/onlinepubs/reports/aedt_nov_2004.pdf)

Letter Report, Workshop #2, FAA Aviation Environmental Design Tool (AEDT) and Aviation
environmental Portfolio Tool (APMT), August 24 – August 26, 2004, Washington, DC,
Transportation Research Board of the National Academies.
(http://onlinepubs.trb.org/onlinepubs/reports/aedt_april_2005.pdf)

Letter Report, Workshop #3, FAA Aviation Environmental Design Tool (AEDT) and Aviation
environmental Portfolio Tool (APMT), January 31 – February 2, 2005, Washington, DC,
Transportation Research Board of the National Academies.
(http://onlinepubs.trb.org/onlinepubs/reports/aedt_may_2005.pdf)

http://www.microsoft.com/Net/Default.aspx - “What is Microsoft .NET Framework?”

http://support.microsoft.com/ph/8291 - “Microsoft .NET Framework 2.0”

http://support.microsoft.com/ph/8940 - “Microsoft ASP.NET 2.0”

http://msdn.microsoft.com/vstudio/ - “Microsoft Visual Studio 2005”

http://msdn2.microsoft.com/en-us/teamsystem/default.aspx - “Redefining Database Development
with SQL Server and Visual Studio Team System”

